
THE ONLY HUMAN FACTOR: FORMAL 
METHODS AND PASSWORD POLICIES

Saul Johnson



WHAT ARE FORMAL METHODS?

When we say “formal methods” we refer to 
a particular set of techniques focusing on the 
precise mathematical specification, 
development and verification of systems.

Sitting down and hacking away at 
building our software product straight 
away is a recipe for bugs! Our own intuition 
about development decisions that “feel right” 
begins to creep into the project, risking the 
product becoming unfit for purpose.

This is especially apparent in password 
security, particularly in the sets of rules 
system administrators enforce around 
password creation, known as password 
composition policies.



PASSWORD POLICIES: YOU 
KNOW THEM ALREADY!

Password composition policies have become a fact 

of life when creating/changing passwords, 

particularly to online accounts.

They are designed with the intention of making 

password guessing attacks less likely to succeed by 

encouraging users to choose passwords that are 

harder to guess, but the vast majority of these 

policies out there today are unfit for purpose.

The password composition policy behind the form 

on the right belongs/belonged to HMRC. Is there 

anything wrong with it? 



ANSWER: YES, YES THERE 
CERTAINLY IS

The password space is extremely restricted by the 

length constraints and limitations on character set. 

The users have mathematically fewer passwords to 

choose from.

The most common mistake users make when creating 

their passwords is to overuse dictionary words. This 

“dictionary” check prohibits one word.

There is never an excuse for prohibiting passwords 

containing certain characters or passwords that are 

“too long”. All passwords should be hashed to a 

fixed-length string anyway, so why should the 

website care?

Extremely restrictive length requirements,

maximum length enforced.

Special characters not allowed.

Saddest little dictionary check ever devised.



CHOICE AND ENFORCEMENT: RELATED BUT 
DISTINCT

To effectively employ a password 
composition policy on a system, we must 
first choose a policy in an informed way, 
and be able to justify that choice.

Then, we must ensure that this policy is 
enforced correctly on the system. 

Our aim is the development of tools that 
put both of these things within the reach 
of a system administrator with little to 
no background in password security or 
formal methods.



VERIFIED PASSWORD COMPOSITION 
POLICY ENFORCEMENT

Developing formally verified, 

machine-checked password 

composition policy enforcement 

software.



OUR TOOLING: THE COQ PROOF ASSISTANT

We used the Coq proof assistant to 
write software and mathematically 
prove its correctness. For the parts of our 
software artifacts that are of critical 
importance, this is extremely valuable to 
have!

Where performance or flexibility is 
more important, we have used 
Python/Java to develop our tooling 
(more of this later).

Getting all these tools to work together 
was a real challenge, but it was well 
worth it!



CERTIFIED PASSWORD QUALITY
Our first paper was presented 

at iFM 2017 in Turin, Italy. It 

covers verified password policy 

enforcement.



SERENITY: EXTENDING OUR FIRST WORK

Our domain-specific language (DSL) 
Serenity has been in the works for a 
while now to permit system administrates 
to build password composition policy 
enforcement software that is correct by 
construction. 

The language is embedded within the 
Coq proof assistant, and its building 
blocks are formally verified. It’s also 
intuitive enough that system 
administrators can straightforwardly 
express their intended policy with 
minimal training.



SERENITY: AN EXAMPLE POLICY

Definition comprehensive8 :=
(enforce new_pwd (min length 8) 
"New password must be at least 8 characters long!")

/*\ (enforce new_pwd (min count_upper 1) 
"New password must contain an uppercase letter!")

/*\ (enforce new_pwd (min count_lower 1) 
"New password must contain a lowercase letter!")

/*\ (enforce new_pwd (min count_digit 1) 
"New password must contain a digit!")

/*\ (enforce new_pwd (min count_other 1) 
"New password must contain a symbol!").



JUSTIFIABLE PASSWORD 
COMPOSITION POLICY SELECTION

Building a system for automatic, 

justified and privacy-preserving 

password composition policy 

choice.



SOURCING QUALITY DATA FROM PASSWORD DATA 
DUMPS

Large sets of password data, breached by 
cybercriminals, are available online, with 
some containing hundreds of millions of 
passwords.

It’s vital that researchers look at these in 
order to understand user password choice 
and advance password security research. 
Only by examining real passwords can we 
understand how to secure real systems.

These aren’t always clean though, some non-
password tokens are usually present that 
aren’t compliant with the password policy in 
place on the system at the time the 
passwords were stolen.

Dump Policy Size Invalid

RockYou Length > 5 ≈32.6m 0.24%

000webhost Length > 6

Digits > 1

≈15.2m 2.19%

Yahoo Length > 6 ≈453.5k 1.89%

LinkedIn Length > 6 ≈172.4m 0.01%



ON THE INFERENCE OF PASSWORD 
COMPOSITION POLICIES

This work arose as a consequence 

of our pursuit of clean password 

data collected under a known 

password composition policy. 

Accepted at RSDA 2019.



SKEPTIC: AUTOMATIC, JUSTIFIED AND PRIVACY-
PRESERVING PASSWORD POLICY CHOICE

Our project culminates in Skeptic, a 3-part 
system for automatically choosing a 
password composition policy. 

Authority: A verified core written in Coq 
that filters a password data dump according 
to a policy.

Pyrrho: A user behaviour model that 
simulates users choosing different passwords 
in response.

PaCPAL: Password composition policy 
assertion language. A DSL that allows system 
administrators to easily extract results from 
this data automatically. 



WE DON’T NEED TO SEE USER PASSWORDS!

A key finding so far in our work is that we 
don’t actually need to have access to user 
passwords in order to justify our password 
policy choice. This is great for avoiding the 
propagation/sharing of password data and 
preserving user privacy.

Password distributions tend to follow Zipf’s
law. A few passwords are chosen very often, 
and many password are chosen rarely, with 
an exponential fall-off. This means all we 
need to rank password policies is the 
equations that fit the distributions they 
induce. See the blue line on the right.



MORE DIVERSE PASSWORDS, MORE SECURE 
SYSTEM!

Weaker Policy: Steeper Curve/Less 
Uniform Distribution (Length 5)

Stronger Policy: Shallower Curve/More 
Uniform Distribution (Length 6, 1 Digit)



SKEPTIC: AUTOMATIC, JUSTIFIED AND 
PRIVACY-PRESERVING PASSWORD 

COMPOSITION POLICY SELECTION

This work has yet to be 

submitted, and represents the 

culmination of almost all of our 

work so far.



PULLING IT ALL TOGETHER: A USER-
FRIENDLY TOOL

Making all this accessible to 

system administrators. With a 

live demo, if we have time!



PASSLAB: A PASSWORD SECURITY 
TOOL FOR THE BLUE TEAM

Passlab is a proposed piece of 

software for pulling together the 

Skeptic framework into an intuitive 

UI. This extended abstract was 

accepted at DSFM 2019.



THANK YOU! WHAT QUESTIONS DO 
YOU HAVE?

I’m also happy to talk offline if 

you would like to know more 

about my work in detail.


