
z

I Think You Left
Your Redirect

Open

Saul Johnson

z

A (Very) Brief Introduction

I’m Saul, a software verification researcher

here at Teesside University.

I’m mainly working with formal methods

around password strength/cracking but

security research is fun too!

GitHub: @lambdacasserole

Twitter: @lambdacasserole

Web: https://sauljohnson.com

https://github.com/lambdacasserole
https://twitter.com/lambdacasserole
https://sauljohnson.com/

z

Phishing
What is it?

z

Before we begin…
I’m just going to check my e-mail

real quick. Bear with me…

z

So… what just happened?

▪ Our credentials have just been stolen and our Google account has been

compromised.

▪ Did anyone spot the point at which this happened?

▪ A few points to note:

▪ No clever DNS/SSL trickery was involved, we did sign in through the legitimate

Google login page.

▪ We really ended up on the real google.com.

▪ This attack can absolutely be carried out over the open internet today (it hasn’t been

fixed).

▪ Google is absolutely aware that this can be done. This class of attack is well-

known.

z

Now, we’ll play the
attacker…
It’s time to take a look at this

attack again from the perspective

of the party carrying it out…

z

▪ Somehow we were able to insert our own step into Google’s login process.

How did we do this?

▪ We used a well-known vulnerability called an unvalidated redirect/forward.

▪ The Google login page takes a URL parameter continue. On successful login the

user will be redirected to the URL passed as this parameter.

▪ For example, this will redirect us to the Google home page after logging in

successfully: http://accounts.google.com/?continue=google.com

Unvalidated Redirect/Forward

z

But This Redirect Is Validated!

This redirect is validated, however. As far as we can tell, URLs passed to the

continue parameter need to match the following regular expression for the

redirect to go ahead:

*.google.com

z

▪ The problem is that a regular expression containing wildcards (*) is used as the

whitelist.

▪ With such a vast array of web services provided by Google at the google.com

domain, Google must make sure that all redirects/forwards from that domain to

any client-specified URL also use that whitelist.

▪ This is still not enough (user-hosted content is also present at

docs.google.com and drive.google.com) but it is a start.

▪ If just one unvalidated redirect at any google.com domain is present, this

whitelist becomes useless…

What’s The Problem Then?

z

What’s The
Problem Then?
(contd.)

On the right is a flow

diagram showing how

Google probably intended

this to work. Indeed, it is

how it works if we try to

redirect directly to a

malicious domain. We can

get around this, however…

z

What’s The
Problem Then?
(contd.)

Here lies the issue. We can

use a Google open redirect

that doesn’t use a whitelist

as a “bridge” service to

(almost) silently redirect

the user straight from the

legitimate login page to a

malicious website.

z

▪ It is possible to avoid falling victim to this attack by remaining aware of the

domain you’re currently on at all times.

▪ Two-factor authentication would also prevent the attacker from accessing our

Google account if our password was compromised.

Protecting Users Against This Threat

z

▪ This ‘manual’ protection has certain disadvantages:

▪ Users with no understanding of DNS can’t currently be assumed to know that

google.sauljohnson.com is not a Google domain, but just a subdomain above

sauljohnson.com.

▪ Not all browsers (particularly on mobile) show the URL at all times (I’m looking at

you iOS Safari).

▪ Two-factor authentication would keep our Google account safe, but our password

would still be compromised.

Protecting Users Against This Threat (contd.)

z

Automating Protection

▪ Is it possible to protect against this class of attack automatically? That’s another

talk and probably a short research paper.

▪ The short answer is yes, but:

▪ We require a trigger event like a login form submission to alert us that this attack

may be beginning.

▪ We need to be able to tell if we’re redirected away from the domain suspiciously

quickly after a trigger event.

▪ We think that it probably gets much more complicated than this. More research is

required.

z

That Being Said… Prototype!

▪ We have developed a prototype Chrome

extension that protects us against this attack.

▪ It’s called Ordinator for open redirect terminator

▪ It works in just the way we described earlier. A

login event followed suspiciously quickly by a

change in domain triggers a warning.

▪ It’s not currently available.

▪ Demonstration time…

z

An Important Acknowledgement

▪ Though I’ve played around

with it quite a lot, I wasn’t the

one that originally discovered

this vulnerability.

▪ That was a security

researcher called Aidan

Woods, who helped

enormously with this talk and

all those before it on this

topic.

Website:

https://www.aidanwoods.com/

Twitter: @aidantwoods

Write-up (includes Google’s

response to this issue):

https://www.aidanwoods.com/blo

g/faulty-login-pages

https://www.aidanwoods.com/
https://www.aidanwoods.com/blog/faulty-login-pages

z

I’ll be around afterwards if you’d like to talk
offline!

Thank you for your attention!

