
CLOJURE TOOLS FOR 
SYMBOLIC AI

Saul Johnson



Which tools specifically? -
A Pattern Matcher

■ A fully-featured symbolic pattern matcher for Clojure.

■ In a nutshell: lets you flexibly iterate over collections 
of structured data and pull out information you’re 
interested in.

■ An example problem: we’ve got a set of data about a 
bunch of different foods. We need to know the name 
of every red vegetable.



Red Vegetables: A Basic Example

We have data:

(def food 
'([isa cherry fruit] 
[isa cabbage veg] 
[isa chili veg] 
[isa radish veg] 
[isa leek veg] 
[color leek green] 
[color chili red] 
[color cherry red] 
[color cabbage green]
[color radish red])) 

Let’s match on it:

user=> (mfor ['[isa ?f veg] 
food] (? f))

(cabbage chili radish leek)

user=> (mfor* ['([isa ?f veg] 
[color ?f red]) food] (? f))

(chili radish)



Which tools specifically? –
An Operator Search Mechanism

■ A breadth-first search mechanism for applying 
operators.

■ In a nutshell: lets you specify an initial state, a set of 
operators and a goal state, then plans how to realise 
your goal using your operators.

■ An example problem: we need to move a keg of beer 
into the living room, but right now we’re in the garage 
and the beer is in the kitchen under the celery. We can 
walk around, pick up and drop things. What actions do 
we need to take?



EXAMPLE TIME!
Let’s get the computer to do some planning for us!



How did that work? –
Legal Move Generator (LMG)

A legal move generator 

(LMG) is a function 

which takes in our initial 

state and produces a 

number of successor 

states reachable in one 

move.



Let’s play countdown..!

■ Countdown is a simple game we played in my maths class in 
upper school.

■ You need to get from one number to another using only a limited 
number of mathematical operations. For example:

– Add 3

– Multiply by 2

– Subtract 7

■ Let’s capture this in an LMG.



And then cheat using an LMG!

■ In this example, our state 
is n (our current number). 
Our LMG applies each of 
our operators in turn to 
generate a collection of 3 
successor states.

■ We then run a breadth-
first search on the 
resulting tree to plan a 
route to our goal.

(defn lmg [n] 
[(+ n 3) (* n 2) (- n 7)])

user=> (lmg 10)

[13 20 3]

user=> (breadth-search 5 35 lmg)

(5 8 16 32 35) 



Getting More Complex with Operators

Instead of rolling our 
operators into our LMG, 
let’s pass it a collection 
of STRIPS-style 
operators along with our 
initial state to generate 
our tree (or state 
transition graph).



STRIPS?

STRIPS (Stanford Research 
Institute Problem Solver) style 
operators specify:

■ A set of preconditions: is 
this operator applicable in 
the current state?

■ A set of additions to the 
state when the operator is 
applied.

■ A set of deletions from the 
state when the operator is 
applied.

{:pre ((agent ?agent)
(manipulable ?obj)
(at ?agent ?place)
(on ?obj ?place)
(holds ?agent nil))

:add ((holds ?agent ?obj))
:del ((on ?obj ?place)

(holds ?agent nil))}



Enter the Operator Search Mechanism!

Let’s use the operator 

search tool we 

mentioned to move the 

book from the table to 

the bench.

To the REPL!

#{(at R table)
(on book table)
(holds R nil)
(path table bench)
(manipulable book)
(agent R)} 



Expanding our Knowledge: Inference

Given a set of facts, what else 
can we infer?

If Pierre is Jack’s father and 
Jack is Mary’s father, we know 
that Pierre is Mary’s 
grandfather. We can infer this 
and add it to our fact base. 
This might allow us to infer 
something else, and so on.

Let’s capture that rule.

(def grandparent-rule 
'[rule 15
[parent ?a ?b] 
[parent ?b ?c] => 
[grandparent ?a ?c]]) 



Reusable Collection Transformations: 
Matcher Functions

We define a matcher 

function to compile our rule 

(which contains a set of 

antecedants and a set of 

consqeuents, separated by 
an arbitrary => notation) 

into map.

(defmatch compile-rule []
([rule ?id ??antecedents =>

??consequents] :=> 
{:id (? id)
:ante (? antecedents) 
:consq (? consequents)})) 



Time to Apply 
our Rule!

(def family 
'#{[parent Sarah Tom] 

[parent Steve Joe]
[parent Sally Sam]
[parent Ellen Sarah]
[parent Emma Bill]
[parent Rob Sally]}) 

(defn apply-rule [facts rule]
(set (mfor* [(:ante rule) facts] 
(mout (:consq rule)))))

user=> (apply-rule family 
(compile-rule grandparent-rule))

#{[grandparent Ellen Tom] 
[grandparent Rob Sam]}

Let’s apply our 

grandparent rule to a 

set of parent 

relationships.



Bringing the 
Theory into 
Practice

How can we apply 

planning and inference 

engines to the real 

world? Let’s ask our 

phone’s voice assistant 

to do something…



Bringing the 
Theory into 
Practice (cont.)

Using inference and 

planning we can 

begin to create quite 

a robust little AI!



Get your 
hands on the 
code!

Releases are on 

Clojars, 

contribute/read the 

docs on GitHub, 

everything’s on 

Leiningen!



This talk has 
a companion 
paper!

It goes into way more 

detail about the tools 

and techniques 

we’ve covered today:

https://cognesence.co.uk/eurocl

ojure-2017

https://cognesence.co.uk/euroclojure-2017


Extras: The Matcher Form Family Tree


