CLOJURE TOOLS FOR
SYMBOLIC Al

Saul Johnson

Which tools specifically? -
A Pattern Matcher

m A fully-featured symbolic pattern matcher for Clojure.

m [n a nutshell: lets you flexibly iterate over collections
of structured data and pull out information you’re
Interested In.

m An example problem: we’ve got a set of data about a
bunch of different foods. We need to know the name
of every red vegetable.

Red Vegetables: A Basic Example

We have data: Let’s match on it:
(def food user=> (mfor ['[isa ?f veg]
"([isa cherry fruit] food] (? f))

[isa cabbage veg]
[isa chili veg]
[isa radish veg]

(isa leek veg] o
‘color leek green user=> (mfor* ['([isa ?f veg]

‘color chili red] [color ?f red]) food] (? f))

[color cherry red] (chili radish)
[color cabbage green]

[color radish red]))

(cabbage chili radish leek)

Which tools specifically? -
An Operator Search Mechanism

m A breadth-first search mechanism for applying
operators.

m [n a nutshell: lets you specify an initial state, a set of
operators and a goal state, then plans how to realise
your goal using your operators.

m An example problem: we need to move a keg of beer
iInto the living room, but right now we’re in the garage
and the beer is in the kitchen under the celery. We can
walk around, pick up and drop things. What actions do
we need to take?

EXAMPLE TIME!

Let’s get the computer to do some planning for us!

How did that work? -
Legal Move Generator (LMG)

A legal move generator
(LMG) is a function
which takes in our initial

state and produces a »

number of successor

states reachable in one

Let’s play countdown..!

m Countdown is a simple game we played in my maths class in
upper school.

m You need to get from one number to another using only a limited
number of mathematical operations. For example:

- Add 3
- Multiply by 2
- Subtract 7
m Let’s capture this in an LMG.

And then cheat using an LMG!

m |n this example, our state
IS n (our current number). (defn 1mg [n]
Our LMG applies each of [(+ n3) (*n2) (- n7)])
our operators in turn to

generate a collection of 3 user=> (img 10)

successor states. [13 20 3]
m We then run a breadth-
first search on the user=> (breadth-search 5 35 1mg)

resulting tree to plan a
route to our goal. (5 8 16 32 35)

Getting More Complex with Operators

Instead of rolling our
operators into our LMG,
let’s pass it a collection
of STRIPS-style
operators along with our
Initial state to generate
our tree (or state
transition graph).

STRIPS?

STRIPS (Stanford Research
Institute Problem Solver) style
operators specify:

m A set of preconditions: is
this operator applicable in
the current state?

m A set of additions to the
state when the operator is
applied.

m A set of deletions from the
state when the operator is
applied.

{:pre ((agent ragent)

(manipulable ?o0bj)
(at ?agent ?place)
(on ?0bj ?place)
(holds ragent nil))

:add ((holds Pragent ?0bj))

:del ((on ?0bj ?place)
(holds ragent nil))}

Enter the Operator Search Mechanism!

Let’s use the operator

search tool we #{(at R table)
mentioned to move the (on book table)
book from the table to (holds R nil)

the bench. (path table bench)

(manipulable book)
To the REPL! (agent R)}

Expanding our Knowledge: Inference

Given a set of facts, what else
can we infer?

If Pierre is Jack’s father and
Jack is Mary’s father, we know
that Pierre is Mary’s
grandfather. We can infer this
and add it to our fact base.
This might allow us to infer
something else, and so on.

Let’s capture that rule.

(def grandparent-rule
‘[rule 15

‘parent ?a ?b]
 parent ?b ?c] =>

' grandparent ?a ?c]])

Reusable Collection Transformations:
Matcher Functions

We define a matcher

function to compile our rule

(which contains a set of (defmatch compile-rule []
antecedants and a set of ([:gigniéguézigﬁefgents =’
consgeuents, separated by {:4d (? id) '

an arbitrary => notation) :ante (? antecedents)

into map. :consq (? consequents)}))

Time to Apply
our Rule!

Let’s apply our
grandparent rule to a
set of parent
relationships.

(def family

"#{[parent Sarah Tom]
[parent Steve Joe]
[parent Sally Sam]
[parent Ellen Sarah]
[parent Emma Bill]
[parent Rob Sally]})

efn apply-rule acts rule
(def 1 le [f le]
(set (mfor* [(:ante rule) facts]
(mout (:consq rule)))))

user=> (apply-rule family
(compile-rule grandparent-rule))

#{[grandparent Ellen Tom]
[grandparent Rob Sam]}

Bringing the
Theory into
Practice

How can we apply
planning and inference
engines to the real
world? Let’s ask our
phone’s voice assistant
to do something...

Bringing the
Theory into
Practice (cont.)

Using inference and
planning we can -
begin to create quite
a robust little Al!
O

Get your
hands on the
codel

Releases are on
Clojars,
contribute/read the
docs on GitHub,
everything’'s on
Leiningen!

This talk has
a companion
paper!

It goes into way more
detail about the tools
and techniques

we’ve covered today:

https://cognesence.co.uk/eurocl
ojure-2017

Clojure Tools for Practical Artificial Intelligence

Simon Lynch!” and Saul Johnson'-**

"University of Teesside, Middlesbrough, UK
*s.clynch@tees.ac.uk
**saul.johnson@tees.ac.uk

ABSTRACT

Approaching problems around planning and inference in artificial intelligence can be highly demanding for developers who
have never worked in these problem domains before. In this workshop paper, we aim to provide a foundation of techniques and
tools to make construction of software systems that utilize planning and inference mechanisms more accessible 1o developers
waorking in the Clojure programming language. In particular, we investigate how Clojure (in conjunction with a symbolic pattern
matching library) can be used to build some key inference engines used in Artificial Intelligence.

1 Introduction

A common theme in Artificial Intelligence is to find a path from some starting position (the start state) to some desired outcome
(the goal state). This could be, for example. to reorganize a random configuration of objects into organized piles or to efficiently
distribute materials around a warchouse.

The nature of state and the way it is represented depends on the specifics of the problem. For example, if we just need to find a
way to get some animated agent from one room to another in a house, we might simply represent the state as:

+ the agent’s current location
* which rooms connect to which others

This state contains all the information we need to form a plan: where is the agent right now and which rooms must it pass
through to get to the desired location? This is a simple case, but in a complex world in which an agent may take multiple
actions (each of which may have consequences) the state representation can grow to be necessarily much more complex.

2 Legal Move Generators for a Breadth-First Search

Omne of the simpler methods for finding a path from a start state to a goal state is to use a breadth-first search. The breadth-first
search function used in this paper is publicly available!'l. This search takes 3 arguments: a start state, a goal state and a
transformation function which is often called a legal move generator (LMG).

An LMG is a simple function which takes a state as its only argument and returns a sequence of successor states - states which
can be reached by transforming the current state by applying a single operation to it.

2.1 A Maths Problem

Consider a problem in which we need to work out how to get from one number to another using only a small number of simple

https://cognesence.co.uk/euroclojure-2017

Extras: The Matcher Form Family Tree
[matches and mvars

