
Certified Password Quality
A Case Study Using Coq and Linux Pluggable Authentication Modules

João F. Ferreira1, 2, Saul A. Johnson1, Alexandra Mendes1 and Philip J. Brooke1

1 School of Computing, Media and the Arts, Teesside University

2 HASLab/INESC TEC, Universidade do Minho



The Importance of Strong Passwords

• It is well-established that 
without an enforced password 
policy, users tend to create poor 
passwords.

• If an attacker authenticates as a 
legitimate user by guessing their 
password, all security measures 
deployed to keep 
unauthenticated users out of the 
system are rendered irrelevant. 
All bets are off.

2/26



The Shape of a Password Quality Policy

• The subset of passwords a system 
will accept is dictated by its 
password quality policy, which is 
enforced by its password quality 
checker.

• For our purposes, an acceptable 
password is whatever the system 
administrator configures it to be.

• We want to offer the sysadmin 
assurance that the password 
quality checker will correctly 
enforce the policy they create.

3/26



Password Quality Checkers Today

• Focusing on Linux systems, two largely identical pluggable 
authentication modules, pam_cracklib and pam_pwquality, are 
widely deployed (on millions of machines) to prevent users from 
creating unacceptably weak passwords. 

• The passwd tool on most systems will use one of these modules for 
password quality checking during password creation/change.

• Both modules (pam_cracklib, in particular – 1996) are dated, and use 
virtually identical code for the actual password quality checking.

So let’s ask ourselves…

4/26



Should we trust this code to correctly 
enforce the password quality policy as 
specified by the system administrator?

5/26



The pam_cracklib Default Password Policy

Passwords must:

• Not be identical to the previous password, if any. 

• Not be palindromes. 

• Not be a rotated version of the old password, if any. 

• Not contain case changes only in relation to the previous password, if any. 

• Have a Levenshtein distance of 5 or greater from the previous password, if any (difok=5).

• Be at least 9 characters long (minlen=9), however:
• Passwords may be 1 character shorter if they contain at least 1 lower case letter (lcredit=1).
• Passwords may be 1 character shorter if they contain at least 1 upper case letter (ucredit=1).
• Passwords may be 1 character shorter if they contain at least 1 digit character (dcredit=1).
• Passwords may be 1 character shorter if they contain at least 1 other character (ocredit=1). 
• This shortening of minimum length will stack, making for a minimum length of 9 - 4 = 5 for passwords 

containing all 4 classes. 
• Effective minimum length is, then M = m − c where M is the effective minimum length, m is the configured 

minimum length and c is the number of character classes present in the string.

6/26



C Code Used by Linux-PAM

• We identified the functions 
within pam_cracklib necessary 
to implement its default policy.

• Some of these were already 
nicely separated in to their own 
methods.

• Others were not so cleanly 
separated – for example, 
comparison of the new 
password to the old password, 
which was just a call to strcmp.

static int palindrome(const char *new)

{

int i, j;

i = strlen (new);

for (j = 0; j < i; j++)

if (new[i - j - 1] != new[j])

return 0;

return 1;

}

7/26



Implementation and Specification

• First we implemented: using the 
module documentation and 
original source code from the 
official repository, we implemented 
these checkers in Gallina, the 
implementation language of Coq.

• Then we specified: by identifying 
and writing proofs of various 
desirable properties for our 
checkers. Identifying these 
desirable properties made up a 
significant chunk of work.

Lemma string_reverse_involutive

: ∀ (s : string),

string_reverse (string_reverse s) = s. 

Proof.

induction s as [| c s’]. 

(* Base case *)

- simpl. reflexivity.

(* Inductive step *)

- simpl.

rewrite (string_reverse_unit

(string_reverse s’) c).

rewrite IHs’. 

auto. 

Qed.

8/26



Executable Specifications

Definition palindrome (s : string) : bool :=

s ==_s (string_reverse s).

We are able to express some checker functions as executable 
specifications. In this example, we at once define what it means for a 
string to be a palindrome while also defining a function for checking 
whether or not a given string is a palindrome.

9/26



Specification by Theorem

Theorem prefix_correct : ∀ (s1 s2 : string), 
prefix s1 s2 = true ↔ 
substring 0 (length s1) s2 = s1.

For other functions, we could capture their correct behaviour in a 
theorem which serves as their proof of correctness. Here, for instance, 
we define what we mean when we say that one string is a prefix of 
another. The substring and length functions used here are in Coq’s
standard library, with accompanying proofs.

10/26



Specification by Property

Lemma hamming_distance_zero_for_identical
: ∀ (s : string), 
hamming_distance s s = Some 0.

Lemma hamming_distance_defined_for_same_length
: ∀ (a b : string), 
length a = length b → hamming_distance a b ≠ None.

Sometimes we might only be interested in increasing our confidence our 
code by proving various desirable properties about it. Here, for example, we 
create a lemma which states that identical strings have a Hamming distance 
of 0 from each other and for any two strings of the same length, Hamming 
distance is defined.

11/26



Pulling Our Checkers Together into a Policy

Finally, we combined these into one password policy function with 
signature:

PasswordTransition → CheckerResult

12/26



Pulling Our Checkers Together into a Policy

Finally, we combined these into one password policy function with 
signature:

PasswordTransition → CheckerResult

Equivalent to:

13/26



An Example of a Password Policy

Definition pwd_quality_policy := [
diff_from_old_pwd ; 
not_palindrome ; 
not_rotated ; 
not_case_changes_only ; 
levenshtein_distance_gt 5 ; 
credits_length_check 8 

].

• This password policy encodes the 
default behaviour of pam_cracklib
and pam_pwquality.

• The last one credits_length_check
represents a seemingly home-
grown algorithm we found in the 
original modules. 

• We were surprised by how easily 
we were able to implement this 
custom functionality.

14/26



Building a PAM Module Using Verified Code

• It was anticipated that we would 
be able to extract the verified 
Gallina to Haskell, then use a C 
driver conforming to the PAM 
interface to call into it using the 
Haskell FFI.

• After compiling and linking this 
driver, we’d have a self-
contained PAM module that runs 
verified code.

15/26



Evaluating Our Verified Module

• We located a database of 5 
million leaked plaintext 
passwords from various sources 
(without accompanying 
usernames) and randomly 
sampled 100,000.

• We ran each of these through 
the system passwd executable 
configured with the original 
pam_cracklib module and our 
verified module in turn.

16/26



Default Policy: Original vs. Verified Modules

Number of passwords accepted by 
unverified, original module:

56574

Number of passwords accepted by 
verified module:

56574

17/26



A Research-Informed Policy

• We were very quickly able to 
reconfigure our checker according 
to research by Kelley et al. (2012)

• Their research suggests that the 
most effective countermeasure 
against password guessing attacks 
is enforcing long passwords (16 
characters or greater).

• Under the very simple password 
policy on the right, 970 of our 
100,000 passwords were accepted.

Definition pwd_quality_policy := [
plain_length_check 16 

].

18/26



One specific checker caught our attention…

For context, pam_cracklib treats 
uppercase letters, lowercase 
letters, digits and symbols as 4 
separate character “classes”. 

The configuration option 
maxclassrepeat restricts the 
number of characters of the same 
class that can appear 
consecutively in a password.

For example, when 
maxclassrepeat is set to 3…

“pwd1234”

Rejected – more than 3 
digits in a row.

“password123”

Rejected – more than 3 
lowercase letters in a row.

“PASsw0rd123”

Accepted!

19/26



We set it to 1…

20/26



And It Broke…

Unverified, original module, 
configured with default policy 

extended with maxclassrepeat=1:

56574

Verified module, same 
configuration:

371

21/26



Whence this Bug?

if (opt->max_class_repeat > 1

&& sameclass > opt->max_class_repeat) 
{

return 1;
}

N.B. A bug report submitted to maintainers 
along with pull request containing a fix was 
accepted and merged.

maxclassrepeat=N
Reject passwords which 
contain more than N 
consecutive characters 
of the same class. The 
default is 0 which 
means that this check 
is disabled.

22/26



Limitations and Caveats

• The compiled, verified PAM module is predictably a significantly larger 
file than the original (≈10 times smaller). This is likely to make it 
unappealing for use when storage space is tightly constrained.

• While not drastic, the execution time of the verified module is around 
1.28 times that of the original. When behaviour of both is expected to 
be identical, how can we motivate adoption?

• The Haskell extractor built in to Coq is, as far as we are aware, not 
formally verified to be semantically transparent.

23/26



Future Work

We are currently developing a domain-specific language (DSL) for 
creating password quality checkers that are correct-by-construction. 
Here’s a little preview of our progress so far:

Definition comprehensive8 :=

(enforce new_pwd (min length 8) “Password too short!")

/*\ (enforce new_pwd (min count_upper 1) “Must contain an uppercase letter!")

/*\ (enforce new_pwd (min count_lower 1) “Must contain a lowercase letter!")

/*\ (enforce new_pwd (min count_digit 1) “Must contain a digit!")

/*\ (enforce new_pwd (min count_other 1) “Must contain a symbol!").

24/26



Future Work (contd.)

• We also hope to substantially reduce the size of the unverified C 
driver by stripping out functionality that is not absolutely necessary 
or that has been made redundant by our verification efforts. 

• There is potential scope for future research involving verified 
compilers such as CertiCoq, to address the unverified Haskell 
extractor limitation.

25/26



Everything’s on GitHub!
https://github.com/sr-lab | @lambdacasserole

https://github.com/sr-lab

