

Text Classification
Applied

Guest lecture by Saul Johnson

Who am I?

I'm Saul, a final-year information security Ph.D.
candidate at Teesside University in the north-east
of England.

I'm also Head of Software Engineering at
BreachLock B.V. an Amsterdam-based offensive
security firm.

GitHub: @lambdacasserole
Twitter: @lambdacasserole
Website: https://sauljohnson.com/
Linkedin: https://www.linkedin.com/in/sauljohnson/

https://github.com/lambdacasserole
https://twitter.com/lambdacasserole
https://sauljohnson.com/
https://www.linkedin.com/in/sauljohnson/

Text classification? What's that?

• Text classification refers to the task of
automatically sorting text inputs into different
categories.

• For example, if we're given one big folder full of
text files containing recipes—some for main
course dishes and some for desserts—can we
automatically sort these files into 2 different
folders?

• Sure, we could look for key words in the text and
sort like that, but a much more flexible and reliable
approach is to deploy machine learning!

What are we going to cover?

By the end of this session, we'll aim to:

• Understand what text classification is and how it's useful.

• Know how to apply Python and SciKit Learn to text
classification problems.

• Be familiar in-depth with the Naive Bayes classifier, and be
aware of support vector machine and random forest classifiers.

• Be able to deploy each of these models to solve real-world
text classification problems, and evaluate their accuracy.

• Know how to source and process training data, and where to
access further resources and reading.

Tools and Technologies

scikit

We're going to use a very restrained set of tools
and technologies today, and keep things highly
applied (just the essential theory).

• Our programming language of choice will be
Python.

• We'll be using the SciKit Learn library for our text
classification models it also provides a ton of
useful tools and helper functions to make training
and interacting with text classification models
easier!

Naive Bayes Classifiers
Examining a text classification model in-depth...

Naive Bayes: A Rapid Primer!

One of the easiest text classification models to understand in-
depth is called "Naive Bayes". It has a strange name (we'll
come back to it later) but a number of advantages:

• It's fast, and can be trained and queried very quickly

• It has surprisingly good performance in a whole bunch of
different applications. From automatically detecting the
language a document is written in to sorting positive from
negative movie reviews, Naive Bayes has you covered!

It does have cons, which we'll discuss later on.

Case Study: Spam or not? [1/5]

Let's take a look at how we can train a Naive Bayes model to filter spam from
non-spam messages in our email inboxes! This is a super useful and common
deployment of text classification models.

Let's imagine we have 20 spam and 15 non-spam messages in our training data
set...

Non-spam x15

Spam x20

Case Study: Spam or not? [2/5]

Even without looking inside these messages, we already know useful information!
We receive more spam than non-spam. We therefore have a starting probability
that a new, unseen message that arrives in our inbox is spam! We call these
probabilities our prior probabilities (just "priors" for short).

P(Non-spam) = 0.429
(1 – 0.571)

P(Spam) = 0.571

Case Study: Spam or not? [3/5]

Now, let's actually get into the contents of the messages themselves. Let's build a
frequency distribution of how often each word occurs in spam messages vs
non-spam messages. For simplicity, we'll pretend that each message is made up
of just 5 different words: "hey", "beer", "cash", "friend" and "pharmacy"

Non-spam word frequencies

"hey" occurs 8 times
"beer" occurs 7 times
"cash" occurs 2 times
"pharmacy" occurs 0 times

Spam word frequencies

"hey" occurs 3 times
"beer" occurs 1 time
"cash" occurs 9 times
"pharmacy" occurs 8 times

Case Study: Spam or not? [3/5]

Now, let's actually get into the contents of the messages themselves. Let's build a
frequency distribution of how often each word occurs in spam messages vs
non-spam messages. For simplicity, we'll pretend that each message is made up
of just 4 different words: "hey", "beer", "cash" and "pharmacy"

Non-spam word frequencies

"hey" occurs 8 times
"beer" occurs 7 times
"cash" occurs 2 times
"pharmacy" occurs 0 times

Spam word frequencies

"hey" occurs 3 times
"beer" occurs 1 times
"cash" occurs 9 times
"pharmacy" occurs 8 times

Total words in all non-spam:
8 + 7 + 2 + 0 = 17

Total words in all spam:
3 + 1 + 9 + 8 = 21

Case Study: Spam or not? [3/5]

Now, let's actually get into the contents of the messages themselves. Let's build a
frequency distribution of how often each word occurs in spam messages vs
non-spam messages. For simplicity, we'll pretend that each message is made up
of just 4 different words: "hey", "beer", "cash" and "pharmacy"

Non-spam word probabilities

P("hey" | Non-spam) = 8 ÷ 17 = 0.47
P("beer" | Non-spam) = 7 ÷ 17 = 0.41
P("cash" | Non-spam) = 2 ÷ 17 = 0.18
P("pharmacy" | Non-spam) = 0 ÷ 17 = 0

Spam word probabilities

P("hey" | Spam) = 3 ÷ 21 = 0.14
P("beer" | Spam) = 1 ÷ 21 = 0.05
P("cash" | Spam) = 9 ÷ 21 = 0.43
P("pharmacy" | Spam) = 8 ÷ 21 = 0.38

Case Study: Spam or not? [4/5]

Now, let's imagine we get a new unseen message in our inbox. It's just arrived!
Now we need to classify it! Here's what it says:

"Hey! Cash? Beer!"

Let's do the maths…

Assuming this is non-spam:
prior (0.429) × hey (0.47) × cash (0.18) × beer (0.41) = 0.01488

Assuming this is spam:
prior (0.571) × hey (0.14) × cash (0.43) × beer (0.05) = 0.00171

As the non-spam score is higher than the spam score, we classify it as...

Further reading:
Laplace smoothing. What is
it? Why is it useful?

Case Study: Spam or not? [5/5]

Not spam!

Why "Naive" Bayes?

Naive Bayes is named "naive" because it is
completely ignorant of (i.e. naive to) word order. It
treats text as an unordered "bag of words" which
makes it fast and simple, but very unsuitable for
classification based on language structures.

To a Naive Bayes model:

"Let's eat dinner with grandma tonight!"

Is the same thing as:

"Let's eat grandma with dinner tonight!"

Two Alternative Models
A very high-level overview of two other types of classifier!

Support Vector Machines (SVMs)

Figure from: https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg

Support vector machines are another machine
learning model usable for text classification.

• To apply an SVM to our spam classification
problem, we could situate text inputs at coordinates
in feature space corresponding to their word
frequencies.

• The SVM then finds the best way to draw a border
(also called a hyperplane) separating the two
classes.

• An unseen input can then be classified based on
which side of the border it lands on!

https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg

Random Forest (RF) Classifiers

Figure from: https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png

Random forest classifiers can also be used in
machine learning for text classification.

• To apply random forests in this context, we would
take word frequencies as variables and construct a
whole bunch (100s-1000s) of random
decision trees from them.

• When we want to classify an unseen input, we run
it through each decision tree and see which
decision the majority of trees give as output.

• Whichever class the majority of trees decide on,
that's our classification!

https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png
https://en.wikipedia.org/wiki/Decision_tree

Data Acquisition
Let's go hunting for some data!

Kaggle: An Invaluable Resource!

You may have heard of a website called Kaggle
before. It's a service run by Google that hosts
publicly-available datasets that are ready to use in
machine learning applications!

For training text classification models, it's a
treasure-trove of ready-made datasets. It's
completely free to sign up for an account and you
should definitely do so it you haven't already!

Let's grab a labelled, ready to use SMS spam
dataset from Kaggle now.

https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset

But... this is a CSV file!

Right now, the data is all together in one big CSV
(comma-separated values) file. Let's split each
training input into separate plain text files so we
can take advantage of some of SciKit Learn's
helper functions!

We're going to use Python's built-in CSV reading
functionality

Another great choice for reading CSV files (and
Excel files and more!) is a library called Pandas.
This library is much more powerful than Python's
in-built functionality, but for simplicity's sake we'll
stick with the standard library approach for now.

Time to write some code!
Let's build a text classification solution from the ground up!

But first! A note on GitHub!

All the source code from our work today will be
hosted on my GitHub account here!

GitHub (owned by Microsoft) is a very popular
platform for software developers, machine learning
engineers, data science practitioners etc. to share
their open-source code!

GitHub has a fantastic student developer pack with
a ton of free giveaways. You can sign up here with
your NHL Stenden email if you're interested:

https://education.github.com/pack

https://github.com/lambdacasserole/text-classification-lecture
https://education.github.com/pack

Prepping our data...

First, we use SciKit's
load_files function,
specifying a
directory containing
sub-folder.

We then split our
data into testing and
training sets,
reserving a specific
portion of data (in
this case 20%) for
testing our model
and determining its
accuracy.

Building a Pipeline

Then, we'll choose a
classifier. Let's go
with MultinomialNB
(Naive Bayes) for
now, but notice that
SVM and RF
classifiers are also
shown here (but
commented out).

We then create a
pipeline around this
classifier.

But what is a
pipeline?

Building a Pipeline

A pipeline is a very
concise and powerful
way to encode a
machine learning
workflow using SciKit
Learn.

Here, we use
CountVectorizer to
convert words to
frequencies, a
TfidfTransformer to
perform
TFIDF normalization
and finally, we drop the
result into our chosen
classifier and call
pipeline.fit() to train the
model!

Further reading:
TFIDF normalization. What is
it? Why is it useful?

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Evaluating our work...

Now we'll plot a confusion
matrix, which will give an at-a-
glance overview of how well
our model performs, broken
down by true positives, true
negatives, false positives and
false negatives.

Saving our trained model for later!

Now we've trained our model, let's save it for later so we don't have to re-train it
every time we want to use it!

To do this, we'll save the Python object straight to disk. This process of taking a
Python object, turning it into 1s and 0s and saving it to a file is called
serialization.

Python contains a serilization library called 'pickle', so we sometimes colloquially
refer to serialization in Python as pickling. We use a different library here,
however, called joblib as it can be slightly faster for certain data science
applications.

Interacting with our model

Now we can write another program to load our pickled pipeine from disk and
interactively feed it data! Let's go ahead and write it now!

Thank you for your attention!
I'm sure you have a ton of questions, so let's get into Q&A!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

