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Who am I?

I'm Saul, a final-year information security Ph.D. 
candidate at Teesside University in the north-east 
of England.

I'm also Head of Software Engineering at 
BreachLock B.V. an Amsterdam-based offensive 
security firm.

GitHub: @lambdacasserole
Twitter: @lambdacasserole
Website: https://sauljohnson.com/ 
Linkedin: https://www.linkedin.com/in/sauljohnson/ 

https://github.com/lambdacasserole
https://twitter.com/lambdacasserole
https://sauljohnson.com/
https://www.linkedin.com/in/sauljohnson/


  

Text classification? What's that?

• Text classification refers to the task of 
automatically sorting text inputs into different 
categories.

• For example, if we're given one big folder full of 
text files containing recipes—some for main 
course dishes and some for desserts—can we 
automatically sort these files into 2 different 
folders?

• Sure, we could look for key words in the text and 
sort like that, but a much more flexible and reliable 
approach is to deploy machine learning!



  

What are we going to cover?

By the end of this session, we'll aim to:

• Understand what text classification is and how it's useful.

• Know how to apply Python and SciKit Learn to text 
classification problems.

• Be familiar in-depth with the Naive Bayes classifier, and be 
aware of support vector machine and random forest classifiers.

• Be able to deploy each of these models to solve real-world 
text classification problems, and evaluate their accuracy.

• Know how to source and process training data, and where to 
access further resources and reading.



  

Tools and Technologies

scikit

We're going to use a very restrained set of tools 
and technologies today, and keep things highly 
applied (just the essential theory).

• Our programming language of choice will be 
Python.

• We'll be using the SciKit Learn library for our text 
classification models it also provides a ton of 
useful tools and helper functions to make training 
and interacting with text classification models 
easier!



  

Naive Bayes Classifiers
Examining a text classification model in-depth...



  

Naive Bayes: A Rapid Primer!

One of the easiest text classification models to understand in-
depth is called "Naive Bayes". It has a strange name (we'll 
come back to it later) but a number of advantages:

• It's fast, and can be trained and queried very quickly

• It has surprisingly good performance in a whole bunch of 
different applications. From automatically detecting the 
language a document is written in to  sorting positive from 
negative movie reviews, Naive Bayes has you covered!

It does have cons, which we'll discuss later on.



  

Case Study: Spam or not? [1/5]

Let's take a look at how we can train a Naive Bayes model to filter spam from 
non-spam messages in our email inboxes! This is a super useful and common 
deployment of text classification models.

Let's imagine we have 20 spam and 15 non-spam messages in our training data 
set...

Non-spam x15

Spam x20



  

Case Study: Spam or not? [2/5]

Even without looking inside these messages, we already know useful information! 
We receive more spam than non-spam. We therefore have a starting probability 
that a new, unseen message that arrives in our inbox is spam! We call these 
probabilities our prior probabilities (just "priors" for short).

P(Non-spam) = 0.429
(1 – 0.571)

P(Spam) = 0.571



  

Case Study: Spam or not? [3/5]

Now, let's actually get into the contents of the messages themselves. Let's build a 
frequency distribution of how often each word occurs in spam messages vs 
non-spam messages. For simplicity, we'll pretend that each message is made up 
of just 5 different words: "hey", "beer", "cash", "friend" and "pharmacy"

Non-spam word frequencies

"hey" occurs 8 times
"beer" occurs 7 times
"cash" occurs 2 times
"pharmacy" occurs 0 times

Spam word frequencies

"hey" occurs 3 times
"beer" occurs 1 time
"cash" occurs 9 times
"pharmacy" occurs 8 times



  

Case Study: Spam or not? [3/5]

Now, let's actually get into the contents of the messages themselves. Let's build a 
frequency distribution of how often each word occurs in spam messages vs 
non-spam messages. For simplicity, we'll pretend that each message is made up 
of just 4 different words: "hey", "beer", "cash" and "pharmacy"

Non-spam word frequencies

"hey" occurs 8 times
"beer" occurs 7 times
"cash" occurs 2 times
"pharmacy" occurs 0 times

Spam word frequencies

"hey" occurs 3 times
"beer" occurs 1 times
"cash" occurs 9 times
"pharmacy" occurs 8 times

Total words in all non-spam:
8 + 7 + 2 + 0 = 17

Total words in all spam:
3 + 1 + 9 + 8 = 21



  

Case Study: Spam or not? [3/5]

Now, let's actually get into the contents of the messages themselves. Let's build a 
frequency distribution of how often each word occurs in spam messages vs 
non-spam messages. For simplicity, we'll pretend that each message is made up 
of just 4 different words: "hey", "beer", "cash" and "pharmacy"

Non-spam word probabilities

P("hey" | Non-spam) = 8 ÷ 17 = 0.47
P("beer" | Non-spam) = 7 ÷ 17 = 0.41
P("cash" | Non-spam) = 2 ÷ 17 = 0.18 
P("pharmacy" | Non-spam) = 0 ÷ 17 = 0

Spam word probabilities

P("hey" | Spam) = 3 ÷ 21 = 0.14
P("beer" | Spam) = 1 ÷ 21 = 0.05
P("cash" | Spam) = 9 ÷ 21 = 0.43
P("pharmacy" | Spam) = 8 ÷ 21 = 0.38



  

Case Study: Spam or not? [4/5]

Now, let's imagine we get a new unseen message in our inbox. It's just arrived! 
Now we need to classify it! Here's what it says:

"Hey! Cash? Beer!"

Let's do the maths…

Assuming this is non-spam:
prior (0.429) × hey (0.47) × cash (0.18) × beer (0.41) = 0.01488

Assuming this is spam:
prior (0.571) × hey (0.14) × cash (0.43) × beer (0.05) = 0.00171

As the non-spam score is higher than the spam score, we classify it as...

Further reading:
Laplace smoothing. What is 
it? Why is it useful?



  

Case Study: Spam or not? [5/5]

Not spam!



  

Why "Naive" Bayes?

Naive Bayes is named "naive" because it is 
completely ignorant of (i.e. naive to) word order. It 
treats text as an unordered "bag of words" which 
makes it fast and simple, but very unsuitable for 
classification based on language structures.

To a Naive Bayes model:

"Let's eat dinner with grandma tonight!"

Is the same thing as:

"Let's eat grandma with dinner tonight!"



  

Two Alternative Models
A very high-level overview of two other types of classifier!



  

Support Vector Machines (SVMs)

Figure from: https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg 

Support vector machines are another machine 
learning model usable for text classification.

• To apply an SVM to our spam classification 
problem, we could situate text inputs at coordinates 
in feature space corresponding to their word 
frequencies.

• The SVM then finds the best way to draw a border 
(also called a hyperplane) separating the two 
classes.

•  An unseen input can then be classified based on 
which side of the border it lands on!

https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg


  

Random Forest (RF) Classifiers

Figure from: https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png 

Random forest classifiers can also be used in 
machine learning for text classification.

• To apply random forests in this context, we would 
take word frequencies as variables and construct a 
whole bunch (100s-1000s) of random 
decision trees from them.

• When we want to classify an unseen input, we run 
it through each decision tree and see which 
decision the majority of trees give as output.

• Whichever class the majority of trees decide on, 
that's our classification!

https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png
https://en.wikipedia.org/wiki/Decision_tree


  

Data Acquisition
Let's go hunting for some data!



  

Kaggle: An Invaluable Resource!

You may have heard of a website called Kaggle 
before. It's a service run by Google that hosts 
publicly-available datasets that are ready to use in 
machine learning applications!

For training text classification models, it's a 
treasure-trove of ready-made datasets. It's 
completely free to sign up for an account and you 
should definitely do so it you haven't already!

Let's grab a labelled, ready to use SMS spam 
dataset from Kaggle now.

https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset


  

But... this is a CSV file!

Right now, the data is all together in one big CSV 
(comma-separated values) file. Let's split each 
training input into separate plain text files so we 
can take advantage of some of SciKit Learn's 
helper functions!

We're going to use Python's built-in CSV reading 
functionality 

Another great choice for reading CSV files (and 
Excel files and more!) is a library called Pandas. 
This library is much more powerful than Python's 
in-built functionality, but for simplicity's sake we'll 
stick with the standard library approach for now.



  

Time to write some code!
Let's build a text classification solution from the ground up!



  

But first! A note on GitHub!

All the source code from our work today will be 
hosted on my GitHub account here!

GitHub (owned by Microsoft) is a very popular 
platform for software developers, machine learning 
engineers, data science practitioners etc. to share 
their open-source code!

GitHub has a fantastic student developer pack with 
a ton of free giveaways. You can sign up here with 
your NHL Stenden email if you're interested:

https://education.github.com/pack 

https://github.com/lambdacasserole/text-classification-lecture
https://education.github.com/pack


  

Prepping our data...

First, we use SciKit's 
load_files function, 
specifying a 
directory containing 
sub-folder.

We then split our 
data into testing and 
training sets, 
reserving a specific 
portion of data (in 
this case 20%) for 
testing our model 
and determining its 
accuracy.



  

Building a Pipeline

Then, we'll choose a 
classifier. Let's go 
with MultinomialNB 
(Naive Bayes) for 
now, but notice that 
SVM and RF 
classifiers are also 
shown here (but 
commented out).

We then create a 
pipeline around this 
classifier.

But what is a 
pipeline?



  

Building a Pipeline

A pipeline is a very 
concise and powerful 
way to encode a 
machine learning 
workflow using SciKit 
Learn.

Here, we use 
CountVectorizer to 
convert words to 
frequencies, a 
TfidfTransformer to 
perform 
TFIDF normalization 
and finally, we drop the 
result into our chosen 
classifier and call 
pipeline.fit() to train the 
model! 

Further reading:
TFIDF normalization. What is 
it? Why is it useful?

https://en.wikipedia.org/wiki/Tf%E2%80%93idf


  

Evaluating our work...

Now we'll plot a confusion 
matrix, which will give an at-a-
glance overview of how well 
our model performs, broken 
down by true positives, true 
negatives, false positives and 
false negatives.



  

Saving our trained model for later!

Now we've trained our model, let's save it for later so we don't have to re-train it 
every time we want to use it!

To do this, we'll save the Python object straight to disk. This process of taking a 
Python object, turning it into 1s and 0s and saving it to a file is called 
serialization.

Python contains a serilization library called 'pickle', so we sometimes colloquially 
refer to serialization in Python as pickling. We use a different library here, 
however, called joblib as it can be slightly faster for certain data science 
applications.



  

Interacting with our model

Now we can write another program to load our pickled pipeine from disk and 
interactively feed it data! Let's go ahead and write it now!



  

Thank you for your attention!
I'm sure you have a ton of questions, so let's get into Q&A!
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