
YOU WILL PWN YOURSELF
WITH YOUR OWN CLIPBOARD
SAUL JOHNSON

A (VERY) BRIEF INTRODUCTION

 I’m Saul, a software verification researcher here at

Teesside University.

 I’m mainly working with formal methods around

password strength/cracking but security research is

fun too!

 GitHub: @lambdacasserole

Twitter: @lambdacasserole

Web: https://sauljohnson.com

https://github.com/lambdacasserole
https://twitter.com/lambdacasserole
https://sauljohnson.com/

COPYING AND PASTING CODE
A TRAGEDY IN FOUR ACTS

ACT I: THE DEADLINE

 The client is breathing down your manager's

neck and your manager is breathing down

yours. There's a deadline you're racing to meet and

there's one thing left to do.

 The client wants the page to load a so-called

“analytics pixel” after a delay of a couple of seconds

to track user “bounce rates”

 This will allow the client to track which proportion

of users stay on the website for more than a few

seconds.

ACT II: WHAT WAS THAT FUNCTION CALLED AGAIN?

 There’s a function in JavaScript to execute some

code one time only after a delay... was it
setInterval? No, that’s not right… you wrack

your brain.

 The function name is right on the tip of your tongue

as your manager peeks around the corner "Client says

she'll be here in 5 minutes, that demo ready?"

 Your train of thought scatters to the four winds…

ACT III: LET ME JUST GOOGLE THAT REAL QUICK

 “Working on it, 2 minutes.” You reply as it dawns on
you that there truly is no more time, you Google
“load image after delay js”, pull up the first answer
that comes up and glance it over in a hurry. It all
comes flooding back, that function is setTimeout
of course!

 In fact, this code looks like exactly what you need. In
one fluid motion… copy, paste, a few tweaks and…
done!

 The meeting goes smoothly, the client loves it
(especially your shiny new analytics pixel script) and
you grab Thai food on the way home to congratulate
yourself on a job well done.

INTERLUDE: HERE’S WHAT YOU COPIED

Here’s the code you copied and pasted over. Nothing overtly suspicious, right?

var element = '';

setTimeout(function() {

document.body.innerHTML += element

.replace(/\u200b/g, '0')

.replace(/\u200c/g, '1')

.replace(/\u200d/g, ' ')

.replace(/\d+\s?/g, x => String.fromCharCode('0b' + x)), 2000);

});

ACT IV: SORRY I TRACKED MALWARE ALL OVER THE PROJECT

 A few months pass uneventfully, new clients come

and go, you've forgotten all about that analytics pixel,

until one day the project manager bursts in.

“Remember that client from a few months back?

Website's been compromised and credit card numbers

are being lifted from the payment details page. We also

think there's a cryptocurrency miner in there.”

 All your dependencies are clean... the team has

combed over them again and again by hand and

there's nothing to be found.

 Let’s dissect the code from earlier…

A SECOND LOOK (THIS TIME WITH COMMENTS)

Here’s the code from before, with comments added.

var element = ''; // The image element to add.

setTimeout(function() { // Execute the following code after 2000 milliseconds.

document.body.innerHTML += element // Add the image to the page.

.replace(/\u200b/g, '0') // I dunno, something to do with URLs?

.replace(/\u200c/g, '1') // Something else to do with URLs?

.replace(/\u200d/g, ' ') // See where this is going?

.replace(/\d+\s?/g, x => String.fromCharCode('0b' + x)), 2000); // Wat?

});

LIVE DEMO TIME!
ON THE IMPORTANCE OF KNOWING WHAT YOUR CODE DOES…

CHARACTERS EXIST THAT WE CAN’T SEE!

 In Unicode, there exist several so-called “non-printable” characters that are not displayed in most ordinary text

editors by default.

 The ones we use here are “zero-width” because unlike regular whitespace characters like the space and the tab,

they take up zero horizontal line width (i.e. none at all).

 The three used here are the “zero-width space”, “zero-width joiner” and “zero-width non-joiner”.

 Uses for these vary, but they do have legitimate use cases in, for example, languages that don’t use spaces as part

of their script, and languages that use a lot of different diacritics.

 Hidden in the onload event handler from earlier is a malicious JavaScript payload, encoded as zero-width

characters.

HERE’S WHAT’S GOING ON

Here’s the code snippet from earlier, see what’s

happening now?

// Decode to binary (ASCII text).

.replace(/\u200b/g, '0')

.replace(/\u200c/g, '1')

.replace(/\u200d/g, ' ')

// Decode binary to JavaScript code.

.replace(/\d+\s?/g, x =>

String.fromCharCode('0b' + x)), 2000);

Name Codepoint Translation

ZERO WIDTH

SPACE
U+200B 0

ZERO WIDTH

NON-JOINER
U+200C 1

ZERO WIDTH

JOINER
U+200D <space>

SO WHAT ARE THE LIMITATIONS HERE?

 This technique allows us to embed arbitrary scripts

into webpages with no visible changes to the source

code at all. It’s (almost) free real estate for whatever

payload we like, so long as the decoding logic is in

there somewhere.

 File size will be a dead giveaway, though. As will the

UI of a text editor if it shows the current column

number, for example.

 The cursor will also get “stuck” if we step through

the text with our arrow keys.

HOW CAN I MESS WITH THIS MYSELF?

 I make a toolkit available on GitHub for encoding

scripts as zero-width characters, as well as detecting the

presence of the three zero-width characters used here

in text files.

 Every file shown during this presentation was created

with this toolkit, which is written in Python and Bash.

 Get your hands on it here:

https://github.com/lambdacasserole/zero-width-js

 Be responsible with this code. It doesn’t do anything you

couldn’t do manually with Notepad++ and a free online

text to binary converter, but be ethical and legal please.

https://github.com/lambdacasserole/zero-width-js

THANK YOU FOR YOUR ATTENTION!
I’LL BE AROUND AFTERWARDS IF YOU’D LIKE TO TALK OFFLINE!

ACKNOWLEDGEMENTS

 Jordan Eleredge wrote the Snake implementation in JavaScript:

 Jordan’s GitHub: https://github.com/captbaritone

 The Snake repository itself: https://github.com/captbaritone/snake.js

https://github.com/captbaritone
https://github.com/captbaritone/snake.js

