
Passlab: A Password Security 
Tool for the Blue Team

Saul A. Johnson1

1 School of Engineering, Computing and Digital Technologies, Teesside University



What is a Red Team?

• The CNSS Glossary says it best.

• When it comes to exploiting 
weak user passwords, the red 
team (the team performing the 
penetration test) has a whole 
host of tools to work with.

• Password cracking tools like 
Hashcat/John the Ripper, scripts 
to run online guessing 
attacks/credential stuffing 
attacks etc. 

“A group of people authorized and 
organized to emulate a potential 
adversary’s attack or exploitation 
capabilities against an enterprise’s 
security posture.”

—Committee on National Security 
Systems (CNSS) Glossary[1] 



What is a Blue Team?

• Password security tools are a lot 
thinner on the ground when it 
comes to defending against 
password guessing attacks.

• My Ph.D. aims to contribute 
formal methods to synthesise
and evaluate password 
composition policies—sets of 
rules around user password 
creation designed to encourage 
stronger passwords.

“A group of individuals that 
conduct operational network 
vulnerability evaluations and 
provide mitigation techniques to 
customers who have a need for an 
independent technical review of 
their network security posture.”

—Committee on National Security 
Systems (CNSS) Glossary[1]



Some Background!
What are password composition policies, and what are their desirable security 
properties?



Password Policies: You Know them Already!

• Password composition policies have 
become a fact of life when 
creating/changing passwords.

• They are designed with the intention 
of making password guessing attacks 
less likely to succeed by encouraging 
users to choose passwords that are 
harder to guess.

• The vast majority of these policies out 
there today are unfit for purpose.

• The password composition policy 
behind the form on the right 
belongs/belonged to the British 
Revenue and Customs agency HMRC. 
Is there anything wrong with it?



Answer: Yes, Yes There Certainly Is

• The password space is extremely 
restricted by the length constraints 
and limitations on character set. 

• One of the most common mistakes 
users make when creating their 
passwords is to overuse dictionary 
words. This “dictionary” check 
prohibits one word.

• There is never an excuse for 
prohibiting passwords containing 
certain characters or passwords that 
are “too long”. All passwords should 
be hashed to a fixed-length string 
anyway, so why should the website 
care?

Extremely restrictive length requirements,
maximum length enforced.

Special characters not allowed.

Saddest little dictionary check ever devised.



Choice and Enforcement: Related But Distinct

• To effectively employ a password 
composition policy on a system, we 
must first choose a policy in an 
informed way, and be able to 
justify that choice.

• Then, we must ensure that this 
policy is enforced correctly on the 
system. 

• Our aim is the development of a 
tool that puts both of these things 
within the reach of a system 
administrator with little to no 
background in password security or 
formal methods.



Verified Password Composition 
Policy Enforcement
Developing formally verified password composition policy enforcement software.



Certified Password Quality

• Our first paper, Certified Password Quality[2]

was presented at iFM 2017 in Turin, Italy. It 
implements verified password composition 
policy enforcement by demonstrating the 
encoding of password composition policies 
using the Coq proof assistant.

• These policies could then be extracted to 
Haskell and used from a C driver program, 
allowing them to be used as pluggable 
authentication modules on real Linux 
systems!

• In doing this, we uncovered a bug in the 
original modules dating all the way back to 
(we think) 1996/7! We submitted a PR 
containing a fix, which was merged:

https://github.com/linux-pam/linux-
pam/issues/16

https://github.com/linux-pam/linux-pam/issues/16


Serenity: Extending Our First Work

• Our domain-specific language (DSL) 
Serenity has been in the works for a 
while now and builds on our first piece of 
work, to permit system administrates to 
build password composition policy 
enforcement software that is correct by 
construction. 

• The language is embedded within the 
Coq proof assistant, and its building 
blocks are formally verified. 

• It’s also intuitive enough that system 
administrators can straightforwardly 
express their intended policy with 
minimal training. DSLs have a recognised 
advantage in being easy to adopt[3].



An Example
(* String reversal is involutive. *)
Theorem string_reverse_involutive

: ∀ (s : string),
string_reverse (string_reverse s) = s.
Proof.

(* Proof omitted here for brevity. *)
Qed.

(* A string is a palindrome if it equals
* itself, reversed. *)

Definition palindrome (s : string) : 𝔹 :=
match string_dec s (string_reverse s) with

| left _ => true

| right _ => false
end.

• As an example, consider a password 
composition policy that prohibits 
password that are palindromes (i.e. read 
the same forwards as backwards).

• The Serenity DSL contains a checker for 
this, which is itself formally verified. The 
palindrome function is shown on the 
left, and one of the correctness 
properties of its constituent functions 
(string_reverse) is shown above.

• In providing a DSL for specifying password 
composition policies with formally 
verified building blocks, we permit system 
administrators to create correct-by-
construction software enforcing them.



Serenity: An Example Policy

Definition comprehensive8 :=
(enforce new_pwd (min length 8) 
"New password must be at least 8 characters long!")

/*\ (enforce new_pwd (min count_upper 1) 
"New password must contain an uppercase letter!")

/*\ (enforce new_pwd (min count_lower 1) 
"New password must contain a lowercase letter!")

/*\ (enforce new_pwd (min count_digit 1) 
"New password must contain a digit!")

/*\ (enforce new_pwd (min count_other 1) 
"New password must contain a symbol!")

/*\ (prohibit new_pwd palindrome
"New password cannot be a palindrome!").



Justifiable Password Composition 
Policy Selection
Building a system for automatic, justified and privacy-preserving password 
composition policy choice.



Measuring Password Policy Impact

• Formal methods for evaluating the impact
of password policies on human-chosen 
passwords must be informed by human-
chosen passwords!

• Password selection varies (though not as 
much as you’d think) across systems, 
demographics, age groups[4], so we need 
to select a large, breached password 
database that is as representative as 
possible of our user base.

• Password diversity is the key here. We 
want users to select passwords from the 
available password space as uniformly as 
possible to protect against guessing 
attacks[5, 6, 7].



More Varied Passwords, More Secure System!

RockYou (Weaker Policy): Steeper Curve/Less 
Uniform Distribution (Length 5)

000webhost (Stronger Policy): Shallower 
Curve/More Uniform Distribution (Length 6, 1 Digit)



We Don’t Need to See User Passwords!

• A key finding so far in our work is that we 
don’t actually need to have access to 
user passwords in order to justify our 
password policy choice. This is great for 
avoiding the propagation/sharing of 
password data and preserving user 
privacy.

• Password distributions tend to follow 
Zipf’s law[5, 6]. A few passwords are 
chosen very often, and many passwords 
are chosen rarely, with an exponential 
fall-off. 

• This means all we need to rank password 
policies is the equations that fit the 
distributions they induce. See the blue 
line on the right.



Skeptic: Automatic, Justified and Privacy-
Preserving Password Policy Choice
Our project culminates in Skeptic, a 3-part 
system for automatically choosing a 
password composition policy. 

• Authority: A verified core written in Coq
that filters a password data dump 
according to a policy.

• Pyrrho: A user behaviour model that 
simulates users choosing different 
passwords in response and fits power-law 
equations to the resulting distributions. 
Written in Python.

• PaCPAL: Password composition policy 
assertion language. A DSL that allows 
system administrators to easily extract
results from this data automatically. 
Written in Idris.



Pulling it All Together: A User-Friendly Tool

• Passlab is a proposed piece of software, written in 
Java, for pulling together the Skeptic framework 
into an intuitive UI.

• Development is already well underway!

• It uses a visual editor to allow users to evaluate 
password policies by examining their effect on real-
world password datasets.

• On the right, data flows from a raw data source 
(e.g. a downloaded password data dump) through 
a formatting node and to a Zipf model node, which 
fits a power-law equation to the data.

• From here, we can synthesise a “lockout policy”[9]. 
How many incorrect password entry attempts 
should we allow before locking the account down 
to keep probability of breach below 0.02?

• Password policy filtration nodes are next to be 
implemented!



Pulling it All Together: A User-Friendly Tool 
(cont.)
• We plan to add support for synthesis of 

password composition policies using 
Attack-Defence Trees[10].

• This will allow users to tailor password 
composition policies to specific guessing 
attacks (or classes of guessing attack) that 
they expect their systems to encounter.

• On the right here is an example of what 
such an ADTree might look like. The 
attacker has a goal to guess password P, 
using a dictionary attack D or a brute-
force attack up to length-14 passwords.

• To mitigate this attack, we use defence 
nodes mandating that password P is not 
in D, and that the length of the password 
is greater than 14.



Making Sense of All These Tools!



References

1. Committee on National Security Systems (CNSS) Glossary, 
Committee on National Security Systems Instruction (CNSSI) No. 
4009

2. Ferreira J.F., Johnson S.A., Mendes A., Brooke P.J. (2017) Certified 
Password Quality. In: Polikarpova N., Schneider S. (eds) Integrated 
Formal Methods. IFM 2017. Lecture Notes in Computer Science, 
vol 10510. Springer, Cham

3. A. Bariic, V. Amaral and M. Goulão, "Usability Evaluation of 
Domain-Specific Languages," 2012 Eighth International Conference 
on the Quality of Information and Communications Technology, 
Lisbon, 2012, pp. 342-347.

4. J. Bonneau, "The Science of Guessing: Analyzing an Anonymized 
Corpus of 70 Million Passwords," 2012 IEEE Symposium on Security 
and Privacy, San Francisco, CA, 2012, pp. 538-552.

5. David Malone and Kevin Maher. 2012. Investigating the 
distribution of password choices. In Proceedings of the 21st 
international conference on World Wide Web (WWW '12). ACM, 
New York, NY, USA, 301-310. 

6. D. Wang, H. Cheng, P. Wang, X. Huang and G. Jian, "Zipf’s Law in 
Passwords," in IEEE Transactions on Information Forensics and 
Security, vol. 12, no. 11, pp. 2776-2791, Nov. 2017.

7. Sean M. Segreti, William Melicher, Saranga Komanduri, Darya 
Melicher, Richard Shay, Blase Ur, Lujo Bauer, Nicolas Christin, 
Lorrie Faith Cranor, and Michelle L. Mazurek. 2017. Diversify to 
survive: making passwords stronger with adaptive policies. In 
Proceedings of the Thirteenth USENIX Conference on Usable 
Privacy and Security (SOUPS '17), Mary Ellen Zurko, Sonia 
Chiasson, and Matthew Smith (Eds.). USENIX Association, 
Berkeley, CA, USA, 1-12.

8. Jeremiah Blocki, Saranga Komanduri, Ariel Procaccia, and Or 
Sheffet. 2013. Optimizing password composition policies. In 
Proceedings of the fourteenth ACM conference on Electronic 
commerce (EC '13). ACM, New York, NY, USA, 105-122. DOI: 
https://doi.org/10.1145/2492002.2482552

9. Dinei Florêncio, Cormac Herley, and Paul C. Van Oorschot. 2014. 
An administrator's guide to internet password research. In 
Proceedings of the 28th USENIX conference on Large Installation 
System Administration (LISA'14). USENIX Association, Berkeley, CA, 
USA, 35-52. 

10. Kordy B., Mauw S., Radomirović S., Schweitzer P. (2011) 
Foundations of Attack–Defense Trees. In: Degano P., Etalle S., 
Guttman J. (eds) Formal Aspects of Security and Trust. FAST 2010.
Lecture Notes in Computer Science, vol 6561. Springer, Berlin, 
Heidelberg


